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Skew Dyck paths with air pockets
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Abstract. We yield bivariate generating function for the number of n-length partial skew
Dyck paths with air pockets (DAPs) ending at a given ordinate. We also give an asymptotic
approximation for the average ordinate of the endpoint in all partial skew DAPs of a given
length. Similar studies are made for two subclasses of skew DAPs, namely valley-avoiding
and zigzagging, valley-avoiding skew DAPs. We express these results as Riordan arrays.
Finally, we present two one-to-one correspondences with binary words avoiding the patterns
00 and 0110, and palindromic compositions with parts in {2, 1, 3, 5, 7, . . .}.
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1. Introduction

Dyck paths with air pockets (DAPs) are introduced in a recent paper [2]. These
paths consist in lattice paths in N

2 starting at the origin, ending on the x-axis,
and made of up-steps U = (1, 1) and down-steps Dk = (1,−k) where k � 1,
and so that no two down-steps can be consecutive. The length of a path P is
the number of steps in P . DAPs can be viewed as ordinary Dyck paths where
maximal runs of down-steps are replaced by one large down-step. In sorting
theory, DAPs also correspond to a stack evolution with (partial) reset opera-
tions that cannot be consecutive, see [9]. In [2], the authors enumerate these
paths and their prefixes with respect to the length, the type (up or down)
of the last step, and the ordinate of the endpoint. Moreover, they establish a
one-to-one correspondence between DAPs of length n and peak-less Motzkin
paths of length n − 1. In a second paper, the authors [3] generalized DAPs by
allowing them to go below the x-axis, calling them grand Dyck paths with air
pockets (GDAPs). They yield enumerative results for these paths with respect
to their length and various restrictions on their minimum and maximum ordi-
nates. More recently, the definition of DAPs was extended to include horizontal
steps under certain conditions, as described in [1,4].
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Figure 1. From left to right, a skew Dyck path with air
pockets and a partial skew Dyck path with air pockets ending
at ordinate 3, respectively

Let D be the set of all DAPs and Dn be the set of DAPs of length n. In
this paper, we generalize DAPs by allowing back-down steps as follows.

Definition 1. A skew Dyck path with air pockets (abbreviated as “skew DAP”)
is a lattice path in N

2, consisting of steps in the set {U,L,D1,D2, . . .}, where
U = (1, 1), L = (−1,−1), and Dk = (1,−k) for every positive integer k (we
abbreviate D1 to D for convenience), starting at the origin (0, 0), ending some-
where on the x-axis, and such that any occurrence of the following consecutive
patterns is forbidden: UL, LU , and DiDj for any i, j > 0.

We say a skew DAP has length n (where n is a nonnegative integer) if
it consists of n steps (the empty path ε counts as a 0-length skew DAP).
For all n � 0, we let Sn denote the set of n-length skew DAPs, and we set
S =

⋃
n�0 Sn.

Definition 2. A skew DAP is valley-avoiding (v.a. skew DAP for short) if it
contains no occurrence of the consecutive pattern DkU , for all k > 0.

For all n � 0, we let Vn denote the set of n-length v.a. skew DAPs, and we
set V =

⋃
n�0 Vn.

Definition 3. A valley-avoiding skew DAP is zigzagging (z.v.a. skew DAP for
short) if it contains no occurrence of the consecutive pattern LL.

For all n � 0, we let Zn denote the set of n-length z.v.a skew DAPs, and
we set Z =

⋃
n�0 Zn.

Finally, for each type of skew Dyck paths defined above, we will use the
terminology of partial skew Dyck paths to refer to a prefix of a skew DAP (i.e.
the path does not necessarily end on the x-axis). For all n � 0, we let PDn

(resp. PVn, resp. PZn) denote the set of n-length partial skew DAPs (resp.
v.a. skew DAPs, resp. z.v.a. skew DAPs), and we use the notation PD, PV,
PZ for the sets of all partial skew DAPs of each type. We refer to Fig. 1 for
an illustration of a skew DAP and a partial skew DAP.

For k � 0, we consider the generating function fk = fk(z) (resp. gk = gk(z),
resp. hk = hk(z)), where the coefficient [zn]fk (resp. [zn]gk, resp. [zn]hk) of zn

in its series expansion is the number of partial skew Dyck paths of length n,
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ending at ordinate k with an up-step U (resp., with a down-step Dk, k � 1,
resp., with a back-down step L). Also, we introduce the bivariate generating
functions

F (u, z) =
∑

k�0

ukfk(z), G(u, z) =
∑

k�0

ukgk(z), and H(u, z) =
∑

k�0

ukhk(z).

For short, we use the notation F (u), G(u), and H(u) for these functions. In
Sects. 3 and 4 respectively, the same notations are preserved for partial v.a.
skew DAPs and partial z.v.a. skew DAPs, respectively.
Motivation and outline of the paper The main goal of this work is to present
enumerative results for three classes of partial skew Dyck paths, and to exhibit
some links between these paths and restricted classes of binary words and
compositions (incidentally, we express these results as Riordan arrays). More
precisely, in Sect. 2, we give bivariate generating functions for the number of
n-length partial skew DAPs ending at ordinate k � 0 with a given type of
step (up, down or back-down step). We deduce the generating function for
the total number of skew DAPs (resp. of partial skew DAPs). We also give
asymptotic approximations for the corresponding cardinalities, and for the
average ordinate of the endpoint in all partial skew DAPs of a given length.
In Sect. 3, we make a similar study for partial v.a. skew DAPs. In addition, we
present a bijection between these paths and binary words avoiding the patterns
00 and 0110. Section 4 presents the counterpart for z.v.a skew DAPs, and we
provide a bijection between these paths and palindromic compositions with
parts in {2, 1, 3, 5, 7, . . .}. Some of the obtained results are summarized in the
following table.

Type of paths First terms OEIS

Skew DAPs 1, 0, 1, 1, 3, 5, 13, 26, 64, 143, . . . New
Partial skew DAPs 1, 1, 2, 4, 9, 19, 44, 100, 236, 558 . . . New
v.a. skew DAPs 1, 0, 1, 1, 2, 2, 4, 5, 9, 12, . . . A124280
Partial v.a. skew DAPs 1, 1, 2, 3, 5, 7, 11, 16, 25, 37, . . . A130137
z.v.a skew DAPs 1, 0, 1, 1, 2, 2, 3, 4, 6, 8, . . . A103632
Partial z.v.a skew DAPs 1, 1, 2, 3, 5, 7, 10, 14, 20, 28, . . . New

2. Enumerating skew DAPs

In this part, we count partial skew DAPs of a given length, i.e., ending at a
given abscissa, according to the type of the last step, and the ordinate of the
endpoint.
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Theorem 1. We have

F (u) =
s1

s1 − u
, G(u) =

1 − s1z

z(s1 − u)
, H(u) =

1 − s1z

(s1 − u)(s1 − z)
,

and thus,

F (u) + G(u) + H(u) =
s1(1 − z2)

z(s1 − z)(s1 − u)
,

where s1 = A
6z + 4z4−2z3− 4

3 z2− 2
3 z+ 2

3
zA + z+1

3z , with

A =
(
72z5 − 72z4 + 44z3 + 12B z − 48z2 − 12z + 8

) 1
3 ,

and

B =
√

−96z10 + 144z9 + 60z8 − 108z7 − 24z6 − 48z5 + 81z4 − 18z2 + 12z − 3.

Proof. By convention, we fix f0 = 1 to take into account the empty path
consisting of the origin (0, 0) only. A nonempty skew DAP of length n ending
at ordinate k � 1 with an up-step U is uniquely obtained from a skew DAP
of length n − 1 ending at ordinate k − 1 with either an up-step or a down-
step, which implies the recurrence relation fk(z) = z(fk−1(z) + gk−1(z)) for
k � 1. A skew DAP of length n ending at ordinate k � 0 with a down-step
Di, i � 1, is uniquely obtained from a skew DAP of length n − 1 ending
at ordinate k + i, i � 1, with either an up-step U or a back-down-step L,
which implies the recurrence relation gk(z) = z

∑
i�1 (fk+i(z) + hk+i(z)) , for

k � 0. A skew DAP of length n ending at ordinate k � 0 with an L-step
is uniquely obtained from a skew DAP of length n − 1 ending at ordinate
k + 1 with either a down-step or an L-step, which implies the recurrence
relation hk(z) = z(gk+1(z)+hk+1(z)) for k � 0. Hence, we obtain the following
equations:

⎧
⎪⎪⎨

⎪⎪⎩

f0(z) = 1,
∀k > 0, fk(z) = z (fk−1(z) + gk−1(z)) ,
∀k � 0, gk(z) = z

∑
i�1 (fk+i(z) + hk+i(z)) ,

∀k � 0, hk(z) = z (gk+1(z) + hk+1(z)) .

From the previous system, we multiply both sides of all four equations by uk,
then we sum over k, and using basic algebraic methods on generating functions.
For instance, let us examine the case of G(u), which is the least straightforward,
we get:

G(u) =
∑

k�0

gkuk =
∑

k�0

z
∑

i�1

(fk+i(z) + hk+i(z)) uk.
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Interchanging the order of the double summation, the formula becomes:

G(u) = z
∑

i�1

(fi + hi)
i−1∑

k=0

uk = z
∑

i�1

(fi + hi)
1 − ui

1 − u
.

Then, bringing the factor 1
1−u to the front of the expression, and expanding

the product inside of the summation, we deduce:

G(u) =
z

1 − u

⎛

⎝
∑

i�1

fi −
∑

i�1

fiu
i +

∑

i�1

hi −
∑

i�1

hiu
i

⎞

⎠ ,

which can be rewritten as:

G(u) =
z

1 − u
(F (1) − F (0) − F (u) + F (0) + H(1) − H(0) − H(u) + H(0)) .

Ultimately, we derive the following system for F (u), G(u), and H(u):
⎧
⎨

⎩

F (u) = 1 + zu(F (u) + G(u)),
G(u) = z

1−u (F (1) − F (u) + H(1) − H(u)) ,

H(u) = z
u (H(u) − H(0) + G(u) − G(0)) .

Solving the previous linear system for F (u), G(u), and H(u), we get:

F (u) =
u z2 (u − z) (F (1) + H(1)) + u z3(G(0) + H(0)) − u2 + (z + 1)u + z2 − z

u3z − 2u z3 − u2z + z2u − u2 + zu + z2 + u − z
,

G(u) = −z ((zu − 1) (u − z) (F (1) + H(1)) + (z2u − z) (G(0) + H(0)) + u − z)

u3z − 2u z3 − u2z + z2u − u2 + zu + z2 + u − z
,

H(u) = − ((z2u + (u2 − u) z − u + 1) (G(0) + H(0)) + z (zu − 1) (F (1) + H(1)) + z) z

u3z − 2u z3 − u2z + z2u − u2 + zu + z2 + u − z
.

All three fractions share the same denominator, which we can be rewritten
as z(u − s1)(u − s2)(u − s3), where s1, s2, s3 are the roots of u3z − 2u z3 −
u2z + z2u−u2 + zu+ z2 +u− z. We observe that only two roots have a Taylor
expansion around z = 0 (without loss of generality, we assume that these roots
are s2 and s3). According to the kernel method [11], u − s2 and u − s3 are
bad factors that can be cancelled both numerator and denominator. Thus, the
numerator is simplified into the coefficient of u2, and the denominator becomes
z(u − s1). Finally, we obtain:

⎧
⎪⎨

⎪⎩

F (u) = 1−z2(F (1)+H(1))
z(s1−u) ,

G(u) = z(F (1)+H(1))
s1−u ,

H(u) = z(G(0)+H(0))
s1−u ,

where the third root s1 is equal to s1 = A
6z + 4z4−2z3− 4

3 z2− 2
3 z+ 2

3
zA + z+1

3z , with

A =
(
72z5 − 72z4 + 44z3 + 12B z − 48z2 − 12z + 8

) 1
3 ,
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and

B =
√

−96z10 + 144z9 + 60z8 − 108z7 − 24z6 − 48z5 + 81z4 − 18z2 + 12z − 3.

Fixing u = 0 and u = 1 in the above equations, we obtain the values of G(0),
H(0), F (1) and H(1):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G(0) = 1−zs1
zs1

,

H(0) = zs1−1
(z−s1)s1

,

F (1) =
(z−1)(−s2

1z+2s1 z2+z2+s1−z)
z(s1−1)(z−s1)

,

H(1) =
(−2s1−1)z4+(s2

1+2s1+2)z3+(−2s2
1−1)z2+(s3

1−s2
1+2s1−1)z−s2

1+s1

z2(s1−1)(z−s1)
.

Plugging those expressions back into F (u), G(u), and H(u), we obtain the
expected result. �

The first terms of the series expansion of F (u) + G(u) + H(u) are

1 + uz + (u2 + 1)z2 + (u3 + 2u + 1)z3 + (u4 + 3u2 + 2u + 3)z4

+ (u5 + 4u3 + 3u2 + 6u + 5)z5 + (u6 + 5u4 + 4u3 + 10u2 + 11u + 13)z6

+ (u7 + 6u5 + 5u4 + 15u3 + 19u2 + 28u + 26)z7 + O(z8).

Now, we deduce the coefficient [uk](F (u)+G(u)+H(u)) of uk in the series
expansion of F (u) + G(u) + H(u) by using the well known series expansion

1
s1−u = 1

s1

∑
k�0 s1

−k · uk.

Corollary 1. We have

[uk] (F (u) + G(u) + H(u)) =
1 − z2

z(s1 − z)
s−k
1 .

The next remark makes a link with Riordan arrays theory. We refer to
[5,6,12] for a background on Riordan arrays.

Remark 1. Let P be the matrix [pn,k]n,k�0, where pn,k is the number of skew
DAPs of length n ending at ordinate k, i.e. the coefficient of zn in the series
expansion of [uk] (F (u) + G(u) + H(u)). The first values of P are

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 2 0 1 0 0 0 0
3 2 3 0 1 0 0 0 . . .
5 6 3 4 0 1 0 0
13 11 10 4 5 0 1 0
26 28 19 15 5 6 0 1

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Since F (u) + G(u) + H(u) = g(z)
1−uf(z) with f(z) = s−1

1 and g(z) = 1−z2

z(s1−z) , the
matrix P corresponds to the Riordan array

(
1 − z2

z(s1 − z)
,

1
s1

)

.

Now we plug in u = 0 and u = 1 to get the generating functions for skew
DAPs and partial skew DAPs, respectively, and using classical methods [7,10],
we provide an asymptotic approximation of the coefficient of zn.

Theorem 2. The generating function for the total number of skew DAPs with
respect to the length is given by

F (0, z) + G(0, z) + H(0, z) =
z2 − 1

z (z − s1)
,

and an asymptotic approximation of the n-th term is

0.5292 · 2.7309n · n−3/2.

The leading terms of the series expansion of F (0, z)+G(0, z)+H(0, z) are

1 + z2 + z3 + 3z4 + 5z5 + 13z6 + 26z7 + 64z8 + 143z9 + O
(
z10

)
.

Theorem 3. The generating function for the total number of partial skew DAPs
with respect to the length is given by

F (1, z) + G(1, z) + H(1, z) =
s1(1 − z2)

z(s1 − z)(s1 − 1)
,

and an asymptotic approximation of the n-th term is

2.4909 · 2.7309n · n−3/2.

The leading terms of the series expansion of F (1, z)+G(1, z)+H(1, z) are

1 + z + 2z2 + 4z3 + 9z4 + 19z5 + 44z6 + 100z7 + 236z8 + 558z9 + O
(
z10

)
.

By calculating ∂u(F (u, z)+G(u, z)+H(u, z))|u=1, we obtain the following.

Corollary 2. An asymptotic approximation for the average of the ordinate of
the endpoint in all partial skew DAPs of a given length is 2.4859.

3. Enumerating v.a. skew DAPs

In this part, we use the same methodology and notation as in Sect. 2 in order
to enumerate (partial) valley-avoiding skew Dyck paths with air pockets (v.a.
skew DAPs for short), i.e. skew DAPs that do not contain a down-step followed
by an up-step.
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Theorem 4. We have

F (u) =
1

1 − zu
, G(u) =

z2 − z4

(1 − zu)(1 − z − z2 + z3 − z4)
,

H(u) =
z4

(1 − zu)(1 − z − z2 + z3 − z4)
,

and thus,

F (u) + G(u) + H(u) =
1 − z + z3 − z4

(1 − zu)(1 − z − z2 + z3 − z4)
.

Proof. By convention, we fix f0 = 1 to take into account the empty path
consisting of the origin (0, 0) only. A nonempty v.a. skew DAP of length n
ending at ordinate k � 1 with an up-step U is uniquely obtained from a skew
v.a. DAP of length n − 1 ending at ordinate k − 1 with an up-step, which
implies the recurrence relation fk(z) = zfk−1(z) for k � 1. The two recurrence
relations for gk(z) and hk(z) are the same as in the previous section. So, we
refer to Sect. 2 for an explanation on how they are derived, and we have the
following system of equations:

⎧
⎪⎪⎨

⎪⎪⎩

f0(z) = 1,
∀k > 0, fk(z) = zfk−1(z),
∀k � 0, gk(z) = z

∑
i�1(fk+i(z) + hk+i(z)),

∀k � 0, hk(z) = z(gk+1(z) + hk+1(z)).

Using the same method as for the proof of Theorem 1, the previous system
induces the following equations for F (u), G(u), and H(u):

⎧
⎨

⎩

F (u) = 1
1−zu ,

G(u) = z
1−u (F (1) − F (u) + H(1) − H(u)),

H(u) = z
u (G(u) − G(0) + H(u) − H(0)).

Solving the previous linear system for F (u), G(u), and H(u), we get:
⎧
⎨

⎩

F (u) = 1
1−zu ,

G(u) = C
u3z2−u2z3−u z4−u3z+2u z3+z3+u2−2z2−u+z ,

H(u) = D
u3z2−u2z3−u z4−u3z+2u z3+z3+u2−2z2−u+z ,

with

C = − z
(
u2z2H(1) − u2z(1 + H(1)) + uz3(G(0) + H(0) − H(1))

+ uz2(1 − G(0) − H(0) + H(1)) + uz(1 − H(1)) + uH(1)

− z2(1 + G(0) + H(0) − H(1)) + z(G(0) + H(0) − H(1))
)
,
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and

D = − z
(
u2z2(G(0) + H(0)) − u2z(G(0) + H(0)) + uz3H(1)

− uz2(1 + G(0) + H(0) + H(1)) + u(G(0) + H(0))

+ z2(1 − H(1)) + z(G(0) + H(0) + H(1)) − G(0) − H(0)
)
.

Here, G(u) and H(u) share the same denominator, which we write as (z2 − z)
(u − r1)(u − r2)(u − r3), where r1, r2, and r3 are the roots of u3z2 − u2z3 −
u z4 − u3z + 2u z3 + z3 + u2 − 2z2 − u + z. Since two of them have a Taylor
expansion around z = 0 (without loss of generality, we assume that these
roots are r2 and r3), the kernel method [11] once again tells us that u − r2
and u − r3 are both bad factors and can be thus cancelled both numerator
and denominator in G(u) and H(u). This leaves us with the numerators being
simplified into the coefficient of u2, and the denominators both being simplified
into (z2−z)(u−r1). Moreover, r1 happens to be equal to 1

z , which conveniently
leads to simplifications further on. The previous system is then simplified into:

⎧
⎪⎨

⎪⎩

F (u) = 1
1−zu ,

G(u) = z((z−1)H(1)−1)
(1−z)(u−1/z) ,

H(u) = −z(G(0)+H(0))
u−1/z .

Evaluating the second equation at u = 0, and the third one at u = 0 and u = 1
respectively, we derive the values of G(0), H(0), and H(1):

⎧
⎪⎨

⎪⎩

G(0) = (z2−1)z
z4−z3+z2+z−1 ,

H(0) = −z4

z4−z3+z2+z−1 ,

H(1) = z4

z5−2z4+2z3−2z+1 .

Plugging those expressions back into F (u), G(u), and H(u), we obtain the
expected result. �

The first terms of the series expansion of F (u) + G(u) + H(u) are

1 + uz +
(
u2 + 1

)
z2 +

(
u3 + u + 1

)
z3 +

(
u4 + u2 + u + 2

)
z4

+
(
u5 + u3 + u2 + 2u + 2

)
z5 +

(
u6 + u4 + u3 + 2u2 + 2u + 4

)
z6

+
(
u7 + u5 + u4 + 2u3 + 2u2 + 4u + 5

)
z7 + O

(
z8

)
.

Now, we deduce the coefficient [uk](F (u) + G(u) + H(u)) of uk in the series
expansion of F (u) + G(u) + H(u).

Corollary 3. We have

[uk](F (u) + G(u) + H(u)) =
1 − z + z3 − z4

1 − z − z2 + z3 − z4
zk.
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Remark 2. Let PV be the matrix PV = [pV
n,k]n,k�0, where pV

n,k is the number
of v.a. skew DAPs of length n ending at ordinate k, i.e. the coefficient of zn in
the series expansion of [uk](F (u) + G(u) + H(u)). The first values of PV are

PV =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
2 1 1 0 1 0 0 0 . . .
2 2 1 1 0 1 0 0
4 2 2 1 1 0 1 0
5 4 2 2 1 1 0 1

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since F (u)+G(u)+H(u) = g(z)
1−uf(z) , with f(z) = z and g(z) = 1−z+z3−z4

1−z−z2+z3−z4 ,
the matrix PV corresponds to the Riordan array

(
1 − z + z3 − z4

1 − z − z2 + z3 − z4
, z

)

.

Now we plug in u = 0 and u = 1 to get the generating function for v.a.
skew DAPs and partial v.a. skew DAPs, respectively.

Theorem 5. The generating function for the total number of v.a. skew DAPs
with respect to the length is given by:

F (0, z) + G(0, z) + H(0, z) =
1 − z + z3 − z4

1 − z − z2 + z3 − z4
,

and an asymptotic of the n-th term is

−a4 + a3 − a + 1
4a4 − 3a3 + 2a2 + a

· (
a3 − a2 + a + 1

)n ≈ 0.3051 · 1.5129n,

where a ≈ 0.6609925319 is the smallest root (modulus-wise) of z4 − z3 + z2 +
z − 1.

A simple calculation on generating functions allows to prove that the num-
ber an of n-length v.a. skew DAPs satisfies a0 = a2 = a3 = 1, a1 = 0, a4 = 2
and an = 2an−2 + an−5 for n � 5. The leading terms of the series expansion
of F (0, z) + G(0, z) + H(0, z) are:

1 + z2 + z3 + 2z4 + 2z5 + 4z6 + 5z7 + 9z8 + 12z9 + O
(
z10

)
.

The coefficients spell out sequence A124280 in [13], and the n-th term an

satisfies

an =
�n−2

2 �∑

k=0

n−2k−2∑

j=0

(
j

n − 2k − j − 2

)(
k

n − 2k − j − 2

)

.
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Theorem 6. The generating function for the total number of partial v.a. skew
DAPs with respect to the length is given by:

F (1, z) + G(1, z) + H(1, z) =
1 + z3

1 − z − z2 + z3 − z4
,

and an asymptotic of the n-th term is

a3 + 1
4a4 − 3a3 + 2a2 + a

· (
a3 − a2 + a + 1

)n ≈ 0.9000 · 1.5129n,

where a ≈ 0.6609925319 is the smallest root (modulus-wise) of z4 − z3 + z2 +
z − 1.

A simple calculation on generating functions allows to prove that the num-
ber bn of n-length partial v.a. skew DAPs satisfies b0 = b1 = 1, b2 = 2, b3 = 3,
b4 = 5 and bn = 2bn−2 + bn−5 for n � 5. The leading terms of the series
expansion of F (1, z) + G(1, z) + H(1, z) are:

1 + z + 2z2 + 3z3 + 5z4 + 7z5 + 11z6 + 16z7 + 25z8 + 37z9 + O
(
z10

)
.

The coefficients spell out sequence A130137 in [13].
In the same way as we did at the end of Sect. 2, we obtain the following.

Corollary 4. An asymptotic approximation for the average of the ordinate of
the endpoint in all partial v.a. skew DAPs of a given length is 1.9497.

We end this section by exhibiting a constructive bijection between the set
PVn of n-length partial v.a. skew v.a. DAPs, and the set Bn−1 of (n−1)-length
binary words avoiding the patterns 00 and 0110. Let B =

⋃

n�0

Bn.

Definition 4. We recursively define the map χ from the set PV \ {ε} to B as
follows. For β ∈ PV \ {ε}, we set:

χ(β) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε if β = U (i)
1k−10 if β = UkDk, k � 1 (ii)
χ(α)1 if β = Uα, α ∈ PV \ {ε} (iii)
χ(α)10 if β = UαL, α ∈ V \ {ε} (iv)
χ(α)1k0 if β = UkαDk, k � 1, α ∈ V \ {ε} ending with L (v)

where the operator • acts on a binary word ending with zero, by replacing
this last zero with a one, i.e. w1w2 . . . wn−10 = w1w2 . . . wn−11.

Notice that χ is defined so that the image of any nonempty partial v.a. skew
DAP is a binary word that avoids both patterns 00 and 0110. Furthermore,
the image of any nonempty v.a. skew DAP ends with a 0. For instance, we
have

χ(U4DLD2) = χ(U2DL)110 = χ(UD)10110 = 010110 = 011110.

We refer to Fig. 2 for an illustration of the cases in the definition of the
bijection χ.
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Figure 2. Illustration of the map χ

Theorem 7. The map χ induces a bijection between PVn \ {ε} and B(n − 1)
for all n � 1.

Proof. It follows from Theorem 6 and [13] (entry A130137) that PVn \{ε} and
B(n − 1) have the same cardinality for all n � 1. Thus, it is enough to prove
the injectivity of χ. We proceed by induction on n. The statement is trivial
for n = 1, 2. Now, let n � 3, and let α, β ∈ PVn \ {ε} such that χ(α) = χ(β).

If χ(α) = 1k0, then both χ(α) and χ(β) belong to case (ii) in the definition
of χ. If not, say for example α = UAL with A ∈ V \ {ε}, then 1k0 = χ(α) =
χ(UAL) = χ(A)10, which implies χ(A) = 1k−1, and in turn A = Uk, which
contradicts the fact that A is an element of V \ {ε}. The hypothesis that α is
of the form U �AD� with � � 1 and A ∈ V \{ε} can be ruled out with a similar
reasoning. It now follows from the definition of χ that α = Uk+1Dk+1 = β.

Otherwise, depending on their ending letters, χ(α) and χ(β) both either
belong to case (iii) (χ(α) ends with 1), (iv) (χ(α) ends with 010), or (v)
(χ(α) ends with 110) in the definition of χ. Say they both belong to case (v),
for instance. Then, from the definition of χ, it follows that α = UkADk and
β = U �BD� for some k, � � 1 and A,B ∈ V \{ε} ending with L. Thus, we have
χ(α) = χ(A)1k0 and χ(β) = χ(B)1�0. Suppose for a contradiction that k �= �,
and without loss of generality, let us assume k > �. Then, χ(α) = χ(β) implies
χ(A)1k−� = χ(B). Since χ(A) avoids 00 and ends with 0 (A ∈ V \{ε}), it ends
with 10, which implies χ(B) ends with 111. Now, B cannot be of the form
UXL with X ∈ V \{ε}, otherwise χ(B) would end with 010, and in turn χ(B)
would not end with 111 anymore; moreover, B cannot end with a down-step
since β = U �BD�, which yields a contradiction. Hence, we have k = �, which
implies χ(A) = χ(B). Since A,B ∈ V \ {ε}, we have χ(A) = χ(B), and, by
induction, A = B; thus, α = β.

Cases (iii) and (iv) are handled mutatis mutandis, which completes the
induction. The cardinality argument then proves the bijectivity. �
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4. Enumerating z.v.a. skew DAP

Once again, we use the same methodology and notation as in Sects. 2 and 3
in order to enumerate z.v.a. skew DAPs and partial z.v.a. skew DAPs. Then,
we provide here all main results without the details of the proofs. The first
system of equations is:

⎧
⎪⎪⎨

⎪⎪⎩

f0(z) = 1,
∀k > 0, fk(z) = zfk−1(z),
∀k � 0, gk(z) = z

∑
i�1(fk+i(z) + hk+i(z)),

∀k � 0, hk(z) = zgk+1(z).

Redoing the same work as in Sects. 2 and 3, we are led to the following results.

Theorem 8. We have

F (u) =
1

1 − zu
, G(u) =

z2

(1 − zu)(1 − z − z4)
,

H(u) =
z4

(1 − zu)(1 − z − z4)
,

and thus,

F (u) + G(u) + H(u) =
1 − z + z2

(1 − zu)(1 − z − z4)
.

The first terms of the series expansion of F (u) + G(u) + H(u) are

1 + uz +
(
u2 + 1

)
z2 +

(
u3 + u + 1

)
z3 +

(
u4 + u2 + u + 2

)
z4

+
(
u5 + u3 + u2 + 2u + 2

)
z5 +

(
u6 + u4 + u3 + 2u2 + 2u + 3

)
z6

+
(
u7 + u5 + u4 + 2u3 + 2u2 + 3u + 4

)
z7 + O

(
z8

)
.

Therefore, we can obtain the coefficient [uk](F (u)+G(u)+H(u)) of uk in the
series expansion of F (u) + G(u) + H(u).

Corollary 5. We have

[uk](F (u) + G(u) + H(u)) =
1 − z + z2

1 − z − z4
zk.

Remark 3. Let PZ be the matrix PZ = [pZ
n,k]n,k�0, where pZ

n,k is the number
of z.v.a. skew DAPs of length n ending at ordinate k, i.e. the coefficient of zn

in the series expansion of [uk](F (u) + G(u) + H(u)). The first values of PZ
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are

PZ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
2 1 1 0 1 0 0 0 . . .
2 2 1 1 0 1 0 0
3 2 2 1 1 0 1 0
4 3 2 2 1 1 0 1

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since F (u) + G(u) + H(u) = g(z)
1−uf(z) , with f(z) = z and g(z) = 1−z+z2

1−z−z4 , the
matrix PZ corresponds to the Riordan array

(
1 − z + z2

1 − z − z4
, z

)

.

Now we plug in u = 0 and u = 1 to get the generating function for v.a.
skew DAPs and partial v.a. skew DAPs, respectively.

Theorem 9. The generating function for the total number of z.v.a. skew DAPs
with respect to the length is given by:

F (0, z) + G(0, z) + H(0, z) =
1 − z + z2

1 − z − z4
,

and an asymptotic of the n-th term is

a2 − a + 1
4a4 + a

· (
(a + 1)

(
a2 − a + 1

))n ≈ 0.4382 · 1.3803n,

where a ≈ 0.7244919590 is the smallest root (modulus-wise) of z4 + z − 1.

A simple calculation on generating functions allows to prove that the num-
ber cn of n-length z.v.a. skew DAPs satisfies c0 = c2 = c3 = 1, c1 = 0, and
cn = cn−1 + cn−4 for n � 4. The leading terms of the series expansion of
F (0, z) + G(0, z) + H(0, z) are:

1 + z2 + z3 + 2z4 + 2z5 + 3z6 + 4z7 + 6z8 + 8z9 + O
(
z10

)
.

The coefficients spell out sequence A103632 in [13], and the n-th term cn

satisfies

cn =
�n

2 �∑

k=0

(� 2n−3k−1
2 �

n − 2k

)

.
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Theorem 10. The generating function for the total number of partial z.v.a.
skew DAPs with respect to the length is given by:

F (1, z) + G(1, z) + H(1, z) =
z2 − z + 1

(−1 + z) (z4 + z − 1)
,

and an asymptotic of the n-th term is

a2 − a + 1
a (4a3 + 1) (1 − a)

· (
(a + 1)

(
a2 − a + 1

))n ≈ 1.5905 · 1.3803n,

where a ≈ 0.7244919590 is the smallest root (modulus-wise) of z4 + z − 1.

A simple calculation on generating functions allows to prove that the num-
ber dn of n-length partial z.v.a. skew DAPs satisfies d0 = d1 = 1, d2 = 2,
d3 = 3, d4 = 5 and dn = 2dn−1 − dn−2 + dn−4 − dn−5 for n � 5. The leading
terms of the series expansion of F (1, z) + G(1, z) + H(1, z) are:

1 + z + 2z2 + 3z3 + 5z4 + 7z5 + 10z6 + 14z7 + 20z8 + 28z9 + O
(
z10

)
.

Finally, we obtain the following.

Corollary 6. An asymptotic approximation for the average of the ordinate of
the endpoint in all partial z.v.a. skew DAPs of a given length is 2.6296.

It follows from Theorem 9 and [13] (entry A103632) that n-length z.v.a.
skew DAPs are in bijection with palindromic compositions of n − 2 that have
parts in {2, 1, 3, 5, 7, 9, . . .}, where a palindromic composition of n is a compo-
sition (c1, c2, . . . , ck), c1 + c2 + . . . + ck = n, that reads the same backwards
as forwards; for instance, (3, 1, 5, 2, 5, 1, 3) is a palindromic composition of 20
(see [8]). Let C(n − 2) be the set of such compositions, and let C =

⋃
n�0 C(n).

We shall now provide an explicit bijection.

Definition 5. Let us recursively define the map ψ : Z −→ C as follows. For
β ∈ Z, we set:

ψ(β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε if β = UD (i)
(1) if β = U2D2 (ii)
(2) if β = U2DL (iii)
(3) if β = U3D2L (iv)
(1, ψ(UaDk−2B), 1) if β = Ua+2DkB, a � 1, k � 3 (v)
(2, ψ(UaB), 2) if β = Ua+2DLB, a � 1, B �= ε (vi)
+2ψ(UaDk+1B)+2 if β = Ua+2D2LDkB, a � 2, k � 1 (vii)

where B is a suffix of a z.v.a. skew DAP, and where +2(x1, x2, . . . , xn−1, xn)+2 :=
((x1 + 2), x2, . . . , xn−1, (xn + 2)) for n � 2; for the case n = 1, we define
+2(x1)+2 := (x1 + 4).
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Figure 3. Illustration of the map ψ (the three nontrivial
cases)

For instance, we have

ψ(U7D2LD2LD) = +2ψ(U5D3LD)+2 = +2(1, ψ(U3DLD), 1)+2

= +2(1, 2, ψ(UD), 2, 1)+2 = (3, 2, 2, 3).

We refer to Fig. 3 for an illustration of the nontrivial cases in the definition
of the bijection ψ.

Theorem 11. The map ψ induces a bijection between Zn and C(n − 2) for all
n � 2.

Proof. Since Zn and C(n − 2) have the same cardinality for all n � 2, it
is enough to prove that ψ induces an injection from Zn to C(n − 2). We
proceed by induction on n. The statement is trivial for n = 2, 3. Now, let
n � 4, and let α, β ∈ Zn such that ψ(α) = ψ(β). If ψ(α) ∈ {(2), (3)}, then
we immediately get α = β. Otherwise, depending on their starting letter,
ψ(α) and ψ(β) both either belong to case (v), (vi), or (vii) in the definition
of ψ. Say they both belong to case (v), for instance. Then, from the defi-
nition of ψ, it follows that α = Ua1+2Dk1B1 and β = Ua2+2Dk2B2 for some
a1, a2, k1, k2, B1, B2. Thus, we have ψ(α) = (1, ψ(Ua1Dk1−2B1), 1) and ψ(β) =
(1, ψ(Ua2Dk2−2B2), 1), and in turn, ψ(Ua1Dk1−2B1) = ψ(Ua2Dk2−2B2). Since
Ua1Dk1−2B1 and Ua2Dk2−2B2 are both elements of Zn−2, and ψ is (by induc-
tion) injective from Zn−2 to C(n−4), we deduce Ua1Dk1−2B1 = Ua2Dk2−2B2,
which implies α = β. Cases (vi) and (vii) are handled mutatis mutandis, which
completes the induction. The cardinality argument then proves the bijectivity.

�



Skew Dyck paths with air pockets

Author contributions All authors wrote and reviewed the manuscript.

Declarations
Conflict of interests The authors declare no competing interests.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive
rights to this article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing agreement and
applicable law.

References

[1] Baril, J.-L., Barry, P.: Two kinds of partial Motzkin paths with air pockets. Ars Math.
Contemp. (2024). https://doi.org/10.26493/1855-3974.3035.6ac
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LIB, Université de Bourgogne
B.P. 47 870
21078 Dijon Cedex
France
e-mail: barjl@u-bourgogne.fr

Rémi Maréchal
e-mail: remi.marechal01@etu.u-bourgogne.fr

Helmut Prodinger
Department of Mathematics
University of Stellenbosch
Stellenbosch 7602
South Africa
e-mail: hproding@sun.ac.za

and

NITheCS (National Institute for Theoretical and Computational Sciences)
Stellenbosch
South Africa

Received: November 9, 2023

Revised: April 4, 2024

Accepted: April 5, 2024


	Skew Dyck paths with air pockets
	Abstract
	1. Introduction
	2. Enumerating skew DAPs
	3. Enumerating v.a. skew DAPs
	4. Enumerating z.v.a. skew DAP
	References


